organic papers

Received 20 October 2003

Accepted 5 November 2003

Online 17 January 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimei Chen, Ping Zhong,* Jinchang Ding and Chengye Yuan

Department of Chemistry and Material Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: zhongp0512@sina.com.cn

Key indicators

Single-crystal X-ray study T = 273 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.044 wR factor = 0.128 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1RS,3aSR)-1-(chloromethyl)-1 λ^5 -phospha-2,6a-diazaperhydropentalene 1-oxide dihydrate

The title compound, $C_{12}H_{16}ClN_2OP\cdot 2H_2O$, is a bicyclic phosphonamide, containing carbon and phosphorus asymmetric centers.

Comment

Reaction of glutamic acid with aniline, followed by reduction with LiAlH₄, gave (*S*)-2-anilinomethylpyrrolidine, which then reacted with chloromethanephosphonyl dichloride to give the title compound, (I), along with another isomer (Yuan *et al.*, 2000). The title compound has been used to synthesize α amino phosphonic acid derivatives in high enantiomeric purity (Yuan *et al.*, 2000) than by other methods (Hanessian & Bennani, 1994; Yuan & Cui, 1991).

In (I) (Fig. 1), the bicyclic chloromethylphosphonamide is not planar, with N–P–O angles of 115.88 (10) and 119.46 (10)°, N–P–C angles of 110.03 (11) and 111.37 (10)°, an O–P–C angle of 105.03 (10)°, P–N bond lengths of 1.669 (3) and 1.627 (4) Å, a P–C bond length of 1.812 (3) Å, and a P–O bond length of 1.4787 (16) Å. The molecular structure of (I) was also confirmed by physical and spectroscopic data (Yuan *et al.*, 2000).

Experimental

Compound (I) was synthesized and purified according to the method of Yuan *et al.* (2000). Single crystals suitable for X-ray data collection were obtained by slow evaporation of an ethyl acetate/petroleum

phy The structure of (I), showing the atomic numbering scheme and

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

displacement ellipsoids at the 50% probability level.

organic papers

ether (4:1) solution (m.p. 363–364 K). IR (KBr, cm⁻¹): v 1240, 1080; ¹H NMR (CDCl₃): δ 7.26 (*m*, 5H), 6.87 (*m*, 2H), 4.16 (*m*, 1H), 3.87 (*d*, 2H, J = 6 Hz), 3.74 (m, 1H), 3.61 (m, 1H), 3.27 (m, 2H); MS (EI): 268 (M, 45), 219 (M–CH₂Cl, 44), 114 (M–CH₂Cl–PhNCH₂, 100%).

Mo $K\alpha$ radiation

reflections

 $\theta = 2.4 - 22.0^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$

T = 273 (2) K

Block, colorless $0.34 \times 0.26 \times 0.24 \text{ mm}$

> + 1.4344*P*] where $P = (F_o^2 + 2F_c^2)/3$

> > _3

Cell parameters from 486

 $> 2\sigma(I)$

Crystal data

 $C_{12}H_{16}ClN_2OP{\cdot}2H_2O$ $M_r = 306.72$ Orthorhombic, Pbca a = 10.8756 (4) Åb = 8.9390(3) Å c = 31.227(1) Å $V = 3035.79 (18) \text{ Å}^3$ Z = 8 $D_x = 1.342 \text{ Mg m}^{-3}$

Data collection

Bruker SMART CCD area-detector	2976 independent reflections
diffractometer	2444 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.026$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -10 \rightarrow 13$
$T_{\min} = 0.887, T_{\max} = 0.918$	$k = -8 \rightarrow 11$
15 965 measured reflections	$l = -38 \rightarrow 35$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0646P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F²) = 0.128 $(\Delta/\sigma)_{\rm max} = 0.002$ S = 1.072976 reflections $\Delta \rho_{\rm max} = 0.33 \text{ e Å}$ $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ 189 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H23···O1 ⁱ	0.851 (18)	1.98 (2)	2.819 (3)	168 (4)
O3−H24···O2 ⁱⁱ	0.828 (18)	1.95 (2)	2.757 (3)	166 (3)
O2−H22···O3 ⁱⁱⁱ	0.842 (18)	1.91 (2)	2.740 (3)	171 (3)
$O2-H21\cdots O1^{i}$	0.833 (18)	2.03 (2)	2.850 (3)	167 (4)

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, 1 - z$; (ii) 1 - x, -y, 1 - z; (iii) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z$.

Packing diagram of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines.

All H atoms of the organic molecule were initially located in a difference Fourier map and later placed in idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93–0.97 Å and $U_{iso}(H) = 1.2_{eq}(C)$. The water H atoms were located in a difference Fourier map and refined without any constraints.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. 201015).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Hanessian, S. & Bennani, Y. L. (1994). Synthesis, 12, 1272-1274.

Yuan, C. & Cui, S. (1991). Phosphorus Sulfur Silicon, 55, 159-164.

Yuan, C., Li, S. & Wang, G. (2000). Heteroatom. Chem. 11, 528-535.